Liquid Ammonia Test Solution #1

Mars (Mars Fishcare)

Chemwatch: 4650-12
Version No: 6.1.1.1
Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Liquid Ammonia Test Solution #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Name</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Solution ID# 3335A</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
<tr>
<td>CAS number</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses: Ammonia test solution for product LR8600, 34 and 401M.

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Mars (Mars Fishcare)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>50 East Hamilton Street Chalfont 18914 PA United States</td>
</tr>
<tr>
<td>Telephone</td>
<td>+1 215 822 8181</td>
</tr>
<tr>
<td>Fax</td>
<td>+1 215 822 1906</td>
</tr>
<tr>
<td>Website</td>
<td>Not Available</td>
</tr>
<tr>
<td>Email</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Emergency telephone number

Association / Organisation: Not Available

Emergency telephone numbers: Not Available

Other emergency telephone numbers: Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

<table>
<thead>
<tr>
<th>CHEMWATCH HAZARD RATINGS</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicty</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

GHS Classification: Not Applicable

Legend:

0 = Minimum
1 = Low
2 = Moderate
3 = High
4 = Extreme

Label elements

<table>
<thead>
<tr>
<th>GHS label elements</th>
<th>Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGNAL WORD</td>
<td>NOT APPLICABLE</td>
</tr>
</tbody>
</table>

Hazard statement(s)
Not Applicable

Precautionary statement(s): Prevention
Not Applicable

Precautionary statement(s): Response
Not Applicable
Precautionary statement(s): Storage
Not Applicable

Precautionary statement(s): Disposal
Not Applicable

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>25322-68-3</td>
<td><90</td>
<td>polyethylene glycol</td>
</tr>
<tr>
<td>54-21-7</td>
<td><10</td>
<td>sodium salicylate</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Seek medical attention without delay; if pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

Inhalation
- If fumes, aerosols or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

Ingestion
- If swallowed do NOT induce vomiting.
 - If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
 - Observe the patient carefully.
 - Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
 - Give water to rinse out mouth, then provide liquid slowly and as much as casually can comfortably drink.
 - Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

for salicylate intoxication:
- Pending gastric lavage, use emetics such as synup of Ipecac or delay gastric emptying and absorption by swallowing a slurry of activated charcoal. Do not give ipecac after charcoal.
- Gastric lavage with water or perhaps sodium bicarbonate solution (3%-5%). Mild alkali delays salicylate absorption from the stomach and perhaps slightly from the duodenum.
- Saline catharsis with sodium or magnesium sulfate (15-30 gm in water).
- Take an immediate blood sample for an appraisal of the patient's acid-base status. A pH determination on an anaerobic sample of arterial blood is best. An analysis of the plasma salicylate concentration should be made at the same time. Laboratory controls are almost essential for the proper management of severe salicylism.
- In the presence of an established acidosis, alkali therapy is essential, but at least in an adult, alkali should be withheld until its need is demonstrated by chemical analysis. The intensity of treatment depends on the intensity of acidosis. In the presence of vomiting, intravenous sodium bicarbonate is the most satisfactory of all alkali therapy.
- Correct dehydration and hypoglycaemia (if present) by the intravenous administration of glucose in water or in isotonic saline. The administration of glucose may also serve to remedy ketosis which is often seen in poisoned children.
- Even in patients without hypoglycaemia, infusions of glucose adequate to produce distinct hyperglycaemia are recommended to prevent glucose depletion in the brain. This recommendation is based on impressive experimental data in animals.
- Renal function should be supported by correcting dehydration and incipient shock. Overhydration is not justified. An alkaline urine should be maintained by the administration of alkali if necessary with care to prevent a severe systemic alkalosis. As long as urine remains alkaline (pH above 7.6), administration of an osmotic diuretic such as mannitol or perhaps THAM is useful, but one must be careful to avoid hypokalaemia. Supplements of potassium chloride should be included in parenteral fluids.
- Small doses of barbiturates, diazepam, paraldehyde, or perhaps other sedatives (but probably not morphine) may be required to suppress extreme restlessness and convulsions.
- For hyperpyrexia, use sponge baths.

The presence of petechiae or other signs of haemorrhagic tendency calls for a large Vitamin K dose and perhaps ascorbic acid. Minor transfusions may be necessary since bleeding in salicylism is not always due to a prothrombin effect.
- Haemodialysis and haemoperfusion have proved useful in salicylate poisoning, as have peritoneal dialysis and exchange transfusions, but alkali diuretic therapy is probably sufficient except in fulminating cases.

[GOSSELIN, et al.: Clinical Toxicology of Commercial Products]

The mechanism of the toxic effect involves metabolic acidosis, respiratory alkalosis, hypoglycaemia, and potassium depletion. Salicylate poisoning is characterised by extreme acid-base disturbances, electrolyte disturbances and decreased levels of consciousness. There are differences between acute and chronic toxicity and in a varying clinical picture which is dependent on the age of the patient and their kidney function. The major feature of poisoning is metabolic acidosis due to "uncoupling of oxidative phosphorylation" which produces an increased metabolic rate, increased oxygen consumption, increased formation of carbon dioxide, increased heat production and increased utilisation of glucose.
Direct stimulation of the respiratory centre leads to hyperventilation and respiratory alkalosis. This leads to compensatory increased renal excretion of bicarbonate which contributes to the metabolic acidosis which may coexist or develop subsequently. Hypoglycaemia may occur as a result of increased glucose demand, increased rates of tissue glycolysis, and impaired rate of glucose synthesis. **NOTE**: Tissue glucose levels may be lower than plasma levels. Hyperglycaemia may occur due to increased glycolysis. Potassium depletion occurs as a result of increased renal excretion as well as intracellular movement of potassium.

Salicylates competitively inhibit vitamin K dependent synthesis of factors II, VII, IX, X and in addition, may produce a mild dose dependent hepatitis. Salicylates are bound to albumin. The extent of protein binding is concentration dependent (and falls with higher blood levels). This, and the effects of acidosis, decreasing ionisation, means that the volume of distribution increases markedly in overdose as does CNS penetration. The extent of protein binding (50-80%) and the rate of metabolism are concentration dependent. Hepatic clearance has zero order kinetics and thus the therapeutic half-life of 2-4.5 hours but the half-life in overdose is 18-36 hours. Renal excretion is the most important route in overdose. Thus when the salicylate concentrations are in the toxic range there is increased tissue distribution and impaired clearance of the drug.

HyperTox 3.0 http://www.ozemail.com.au/-ouad/SALI0001.HTA

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).

Special hazards arising from the substrate or mixture
- Fire Incompatibility: Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result.

Advice for firefighters
- Fire Fighting: Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.

- Fire/Explosion Hazard: Combustible.
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

- **Minor Spills**: Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment.
- **Major Spills**: Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling
- Safe handling: DO NOT allow clothing wet with material to stay in contact with skin. DO NOT USE brass or copper containers / stirrers.

Other information
- Store in original containers.
- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.

Conditions for safe storage, including any incompatibilities

- Suitable container: Metal can or drum
- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.
- Storage incompatibility: Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters
- OCCUPATIONAL EXPOSURE LIMITS (OEL)
| INGREDIENT DATA
Not Available

| EMERGENCY LIMITS
Ingredient | TEEL-0 | TEEL-1 | TEEL-2 | TEEL-3 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>polyethylene glycol</td>
<td>10(ppm)</td>
<td>60(ppm)</td>
<td>500(ppm)</td>
<td>500(ppm)</td>
</tr>
<tr>
<td>sodium salicylate</td>
<td>40(ppm)</td>
<td>100(ppm)</td>
<td>500(ppm)</td>
<td>500(ppm)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Ammonia Test Solution #1</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

| MATERIAL DATA
Exposure controls
Appropriate engineering controls
Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:
- Process controls which involve changing the way a job activity or process is done to reduce the risk.

| Personal protection
| Eye and face protection
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task.

| Skin protection
| Hand protection
- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:
- The material may produce skin sensitisation in predisposed individuals.

| Body protection
| Other protection
- Overalls.
- P.V.C. apron.
- Barrier cream.

| Thermal protection

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index".
The effect(s) of the following substance(s) are taken into account in the Liquid Ammonia Test Solution #1 Not Available

Material	CPI
* CPI - Chemwatch Performance Index
A: Best Selection
B: Satisfactory; may degrade after 4 hours continuous immersion
C: Poor to Dangerous Choice for other than short term immersion

Respiratory protection

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.
Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>A-AUS P2</td>
<td>-</td>
<td>A-PAPR-AUS / Class 1 P2</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>-</td>
<td>A-AUS / Class 1 P2</td>
<td>-</td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td>-</td>
<td>A-2 P2</td>
<td>A-PAPR-2 P2 ^</td>
</tr>
</tbody>
</table>

^ - Full-face
A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Continued...
Appearance
Reddish-orange liquid with a mild odour; mixes with water.

<table>
<thead>
<tr>
<th>Physical state</th>
<th>Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>8.3</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Surface Tension (dyn/cm or mN/m)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Oxidising properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Toxicity</td>
<td>Not Available</td>
</tr>
<tr>
<td>Irritation</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY
Reactivity
See section 7

Chemical stability
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions
See section 7

Conditions to avoid
See section 7

Incompatible materials
See section 7

Hazardous decomposition products
See section 5

SECTION 11 TOXICOLOGICAL INFORMATION
Information on toxicological effects

Inhaled
The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
Not normally a hazard due to non-volatile nature of product Inhalation hazard is increased at higher temperatures.

Ingestion
Accidental ingestion of the material may be damaging to the health of the individual.
Large oral doses of salicylates may cause mild burning pain in the throat, stomach and usually prompt vomiting. Several hours may elapse before the development of deep and rapid breathing, lassitude, anorexia, nausea, vomiting, thirst and occasional diarrhoea. Common derivatives of salicylic acid produce substantially the same toxic syndrome, (“salicylism”).

Skin Contact
The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye
Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).

Chronic
Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater frequency than would be expected from the response of a normal population. Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases.

Liquid Ammonia Test Solution #1

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

polyethylene glycol

| Intrapertoneal (Mouse) LD50: 473 mg/kg |
| Intrapertoneal (Mouse) LD50: 7500 mg/kg |
| Intrapertoneal (Rat) LD50: 12900 mg/kg |
| Intrapertoneal (Rat) LD50: 14100 mg/kg |
| Eye (rabbit): 500mg/24h - mild. |
| Skin (rabbit): 500mg/24h - mild. |

Continued...
Sodium Salicylate

<table>
<thead>
<tr>
<th>Route</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraperitoneal (Rat)</td>
<td>542</td>
</tr>
<tr>
<td>Oral (Human)</td>
<td>700</td>
</tr>
<tr>
<td>Oral (Rat)</td>
<td>1200</td>
</tr>
<tr>
<td>Subcutaneous (rat)</td>
<td>980</td>
</tr>
</tbody>
</table>

* Value obtained from manufacturer's msds

TOXICITY

IRRITATION

- The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
- The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis.

Liquid Ammonia Test Solution #1

The material may irritate the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis.

Polyethylene Glycol

Pure polyethylene glycols have essentially similar toxicity, with toxicity being inverse to molecular weights. Absorption from the gastrointestinal tract decreases with increasing molecular weight. The G.I.

- for molecular weights (200-8000) * Oral (rat) LD50: 31000->50000 mg/kg Oral (mice) LD50: 38000->50000 mg/kg Oral (g.pig) LD50: 17000->50000 mg/kg Oral (rabbit) LD50: 14000->50000 mg/kg * AIHA WEEL Guides Intraperitoneal (mice) LD50: 3100-12900 mg/kg

Sodiym Salicylate

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal...
lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS.

CMR STATUS

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration</th>
<th>Effect</th>
<th>Value</th>
<th>Species</th>
<th>BCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Ammonia Test Solution #1</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- **Product / Packaging disposal**
 - **DO NOT** allow wash water from cleaning or process equipment to enter drains.
 - It may be necessary to collect all wash water for treatment before disposal.
 - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.

SECTION 14 TRANSPORT INFORMATION

Labels Required

- Marine Pollutant: NO

Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Pollution Category</th>
<th>Residual Concentration - Outside Special Area (% w/w)</th>
<th>Residual Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances</td>
<td>polyethylene glycol</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances</td>
<td>sodium salicylate</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

polyethylene glycol(25322-68-3) is found on the following regulatory lists:

- US DOE Temporary Emergency Exposure Limits (TEELs)
- IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances
- IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk
- US DOT Coast Guard Bulk Hazardous Materials - List of Flammable and Combustible Bulk Liquid Cargoes
- GESAMP/EHS Composite List - GESAMP Hazard Profiles
- IMO IBC Code Chapter 17: Summary of minimum requirements
- US Toxic Substances Control Act (TSCA)
- Chemical Substance Inventory
- US - Minnesota Hazardous Substance List
- OSPAR National List of Candidates for Substitution – United Kingdom
- Sigma-Aldrich Transport Information
- Acros Transport Information
- International Fragrance Association (IFRA) Survey: Transparency List
- US FDA List of "Indirect" Additives Used in Food Contact Substances
- US FDA Indirect Food Additives - Substances for use as Components of Coatings - Resinous and...
sodium salicylate (54-21-7) is found on the following regulatory lists

- US DOE Temporary Emergency Exposure Limits (TEELs)
- IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances
- US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory
- Sigma-Aldrich Transport Information
- Fisher Transport Information
- US FDA List of “Indirect” Additives Used in Food Contact Substances
- US FDA Cumulative Estimated Daily Intakes (CEDIs) and Acceptable Daily Intakes (ADI)
- US FDA Indirect Food Additives: Adhesives and Components of Coatings - Substances for Use Only as Components of Adhesives
- US Inventory of Effective Food Contact Substance Notifications
- US EPA High Production Volume Program Chemical List
- US Cosmetic Ingredient Review (CIR) Cosmetic ingredients found safe, with qualifications
- US Toxic Substances Control Act (TSCA) - Premanufacture Notice (PMN) Chemicals

SECTION 16 OTHER INFORMATION

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.